STUDYECRAT Java : ArrayList vs LinkedList
60s
Java : ArrayList vs LinkedList
Prove your skills in this interactive quiz
Live Code
Run snippets directly
Timed
60s per question
Scored
Earn 3D badges
★ ArrayList vs LinkedList: Key Interview Insights
1. Random Access Performance
List arrayList = new ArrayList<>(List.of(1,2,3,4,5));
List linkedList = new LinkedList<>(List.of(1,2,3,4,5));
arrayList.get(10000); // O(1) - Instant access
linkedList.get(10000); // O(n) - Traversal required
// ArrayList wins for frequent get() operations
List
arrayList.get(10000); // O(1) - Instant access
linkedList.get(10000); // O(n) - Traversal required
// ArrayList wins for frequent get() operations
- Tip: Use ArrayList when your algorithm requires frequent index-based access
- Real Use: Pagination implementations where direct element access is critical
2. Insertion at Head Performance
long start = System.nanoTime();
for(int i=0; i<10000; i++) {
linkedList.add(0, i); // O(1)
}
long linkedListTime = System.nanoTime() - start;
// Same with ArrayList: O(n) per operation
// LinkedList is 3000x faster for head insertions
for(int i=0; i<10000; i++) {
linkedList.add(0, i); // O(1)
}
long linkedListTime = System.nanoTime() - start;
// Same with ArrayList: O(n) per operation
// LinkedList is 3000x faster for head insertions
- Tip: Prefer LinkedList when building LIFO structures or undo operations
- Real Use: Browser history implementations where recent items are added first
3. Memory Consumption Differences
Runtime.getRuntime().gc();
long before = Runtime.getRuntime().totalMemory();
List list = new ArrayList<>(); // Or LinkedList
for(int i=0; i<1_000_000; i++) list.add(i);
long used = Runtime.getRuntime().totalMemory() - before;
// ArrayList uses ~50% less memory for primitives
long before = Runtime.getRuntime().totalMemory();
List
for(int i=0; i<1_000_000; i++) list.add(i);
long used = Runtime.getRuntime().totalMemory() - before;
// ArrayList uses ~50% less memory for primitives
- Tip: Monitor memory usage with VisualVM when dealing with large collections
- Real Use: High-volume data processing where memory efficiency matters
4. Iterator Performance Comparison
List list = // ArrayList or LinkedList with 100K elements
Iterator it = list.iterator();
while(it.hasNext()) {
it.next(); // Similar performance for both
it.remove(); // LinkedList wins here
}
// LinkedList's iterator.remove() is O(1) vs ArrayList's O(n)
Iterator
while(it.hasNext()) {
it.next(); // Similar performance for both
it.remove(); // LinkedList wins here
}
// LinkedList's iterator.remove() is O(1) vs ArrayList's O(n)
- Tip: Use ListIterator for bidirectional traversal in LinkedList
- Real Use: Efficient removal during game entity processing loops
5. Search Operation Efficiency
List empList = new ArrayList<>();
// vs LinkedList with 10,000 employees
boolean found = empList.contains(someEmployee); // O(n) for both
int index = empList.indexOf(someEmployee); // ArrayList still wins
// ArrayList has better cache locality during linear searches
// vs LinkedList with 10,000 employees
boolean found = empList.contains(someEmployee); // O(n) for both
int index = empList.indexOf(someEmployee); // ArrayList still wins
// ArrayList has better cache locality during linear searches
- Tip: For frequent searches, consider HashSet (O(1)) or binary search on sorted ArrayList
- Real Use: Employee directory lookups where search speed is critical
💡 Pro Interview Tip
When asked "Which to choose?", always respond with: "It depends on the most frequent operation in your use case." Then explain with specific O() complexities.